Black-scholes and the Volatility Surface
نویسنده
چکیده
When we studied discrete-time models we used martingale pricing to derive the Black-Scholes formula for European options. It was clear, however, that we could also have used a replicating strategy argument to derive the formula. In this part of the course, we will use the replicating strategy argument in continuous time to derive the Black-Scholes partial differential equation. We will use this PDE and the Feynman-Kac equation to demonstrate that the price we obtain from the replicating strategy argument is consistent with martingale pricing.
منابع مشابه
ارائه یک روش تلفیقی جهت قیمت گذاری اختیار معامله مبتنی بر دو مدل بلک شولز و درخت دوتایی (مطالعه موردی بازار بورس سهام ایران)
This paper suggests a composed option pricing model based on black-scholes and binomial tree models. So at first this two models are presented and analyzed. Then we showed black-scholes model is an appropriate option pricing model for stocks with low volatility and binomial trees model is an appropriate option pricing model for stocks with high volatility. Suggested model is a composed model of...
متن کاملProperties of utility function for Barles and Soner model
The nonlinear Black-Scholes equation has been increasingly attracting interest over the last two decades, because it provides more accurate values by considering transaction costs as a viable assumption. In this paper we review the fully nonlinear Black-Scholes equation with an adjusted volatility which is a function of the second derivative of the price and then we prove two new theorems in th...
متن کاملImplied volatility surface
The widespread practice of quoting option prices in terms of their Black-Scholes implied volatilities (IVs) in no way implies that market participants believe underlying returns to be lognormal. On the contrary, the variation of IVs across option strike and term to maturity, which is widely referred to as the volatility surface, can be substantial. In this brief review, we highlight some empiri...
متن کاملImplied Volatility: Statics, Dynamics, and Probabilistic Interpretation
Given the price of a call or put option, the Black-Scholes implied volatility is the unique volatility parameter for which the Bulack-Scholes formula recovers the option price. This article surveys research activity relating to three theoretical questions: First, does implied volatility admit a probabilistic interpretation? Second, how does implied volatility behave as a function of strike and ...
متن کاملNormalization for Implied Volatility
We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the...
متن کامل